Rictor, a Novel Binding Partner of mTOR, Defines a Rapamycin-Insensitive and Raptor-Independent Pathway that Regulates the Cytoskeleton
نویسندگان
چکیده
The mammalian TOR (mTOR) pathway integrates nutrient- and growth factor-derived signals to regulate growth, the process whereby cells accumulate mass and increase in size. mTOR is a large protein kinase and the target of rapamycin, an immunosuppressant that also blocks vessel restenosis and has potential anticancer applications. mTOR interacts with the raptor and GbetaL proteins to form a complex that is the target of rapamycin. Here, we demonstrate that mTOR is also part of a distinct complex defined by the novel protein rictor (rapamycin-insensitive companion of mTOR). Rictor shares homology with the previously described pianissimo from D. discoidieum, STE20p from S. pombe, and AVO3p from S. cerevisiae. Interestingly, AVO3p is part of a rapamycin-insensitive TOR complex that does not contain the yeast homolog of raptor and signals to the actin cytoskeleton through PKC1. Consistent with this finding, the rictor-containing mTOR complex contains GbetaL but not raptor and it neither regulates the mTOR effector S6K1 nor is it bound by FKBP12-rapamycin. We find that the rictor-mTOR complex modulates the phosphorylation of Protein Kinase C alpha (PKCalpha) and the actin cytoskeleton, suggesting that this aspect of TOR signaling is conserved between yeast and mammals.
منابع مشابه
Mechanism of Activation of AMPK and Upregulation of OGG1 by Rapamycin in Cancer Cells
AMPK is a physiological cellular energy sensor that is activated by phosphorylation at Thr172 in response to changes in cellular ATP levels. AMPK has been recognized as an important upstream signaling intermediate intimately involved in the regulation of the mTOR pathway [1]. AMPK responds to energy stress by suppressing cell growth and biosynthetic processes, in part through its inhibition of ...
متن کاملHuman cytomegalovirus infection alters the substrate specificities and rapamycin sensitivities of raptor- and rictor-containing complexes.
Signaling mediated by the mammalian target of rapamycin kinase (mTOR) is activated during human cytomegalovirus (HCMV) infection. mTOR is found in two complexes differing by the binding partner, rictor or raptor. Activated mTOR-raptor promotes cap-dependent translation through the hyperphosphorylation of the eIF4E-binding protein (4E-BP). This activity of the raptor complex is normally inhibite...
متن کاملHLA class I antibody-mediated endothelial cell proliferation via the mTOR pathway.
Anti-HLA Abs have been shown to contribute to the process of transplant vasculopathy by binding to HLA class I molecules expressed by the endothelial and smooth muscle cells of the graft and transducing intracellular signals that elicit cell proliferation. The aim of this study was to determine the role of mammalian target of rapamycin (mTOR) in HLA class I-induced endothelial cell proliferatio...
متن کاملPathway Contributes to Tumor Cell Survival in Anaplastic Activation of Mammalian Target of Rapamycin Signaling
Anaplastic lymphoma kinase (ALK)–positive anaplastic large cell lymphoma (ALCL) frequently carries the t(2;5)(p23;q35) resulting in aberrant expression of chimeric nucleophosminALK. Previously, nucleophosmin-ALK has been shown to activate phosphatidylinositol 3-kinase (PI3K) and its downstream effector, the serine/threonine kinase AKT. In this study, we hypothesized that the mammalian target of...
متن کاملIdentification of Protor as a novel Rictor-binding component of mTOR complex-2.
The mTOR (mammalian target of rapamycin) protein kinase is an important regulator of cell growth. Two complexes of mTOR have been identified: complex 1, consisting of mTOR-Raptor (regulatory associated protein of mTOR)-mLST8 (termed mTORC1), and complex 2, comprising mTOR-Rictor (rapamycininsensitive companion of mTOR)-mLST8-Sin1 (termed mTORC2). mTORC1 phosphorylates the p70 ribosomal S6K (S6 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 14 شماره
صفحات -
تاریخ انتشار 2004